
INTRODUCTION TO CYCLIC HOMOLOGY

AXEL GASTALDI †

June 2025

Contents

1 Introduction 2

2 Hochschild (co)homology 2
2.1 Definition of Hochschild homology . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 As a derived functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Definition of Hochschild cohomology . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Relation with other (co)homologies . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Cyclic (co)homology 7
3.1 Definition of cyclic homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Different points of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Definition of cyclic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Connes’ exact sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Decomposition along conjugacy classes . . . . . . . . . . . . . . . . . . . . . . . 12

4 Relation with K-theory 13
4.1 Periodic cyclic homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Chern character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

†Université Aix-Marseille, I2M, ED184

1



1 Introduction
Over the past few decades, the language of homological algebra has increasingly be-

come central to the study of algebraic and geometric structures, particularly in contexts
where traditional tools of commutative geometry are no longer available. One of the most
fruitful developments in this direction has been the emergence of cyclic homology, a the-
ory that arose at the intersection of algebra, topology, and analysis, and has proven to be
a key component in the framework of noncommutative geometry.

The origins of cyclic homology lie in the earlier theory of Hochschild homology, in-
troduced to capture the failure of commutativity in associative algebras. Beyond this
formal role, Hochschild homology gained a deeper geometric interpretation thanks to the
Hochschild–Kostant–Rosenberg theorem, which identifies the Hochschild homology of a
smooth commutative algebra with the space of differential forms. This result revealed
that the Hochschild complex could serve as a noncommutative model for differential ge-
ometry, laying the groundwork for algebraic approaches to smooth manifolds.

Cyclic homology, initially defined by A. Connes in the early 1980’s, defines a refine-
ment of the Hochschild homology. It introduces additional structure into the Hochschild
complex, either via the cyclic operator or through the bicomplex constructed with the
boundary operator introduced earlier by Rinehart. These constructions lead to a theory
which generalizes de Rham cohomology, S1-equivariant homology, and group homology
in various algebraic settings.

A particularly compelling aspect of cyclic homology is its interaction with K-theory.
While algebraic K-groups are notoriously difficult to compute, they admit a canonical
map, the Chern character, into the periodic cyclic homology which satisfies crucial prop-
erties such as Morita invariance, excision, and homotopy invariance. This map preserves
much of the rich structure of the K-theory and facilitates computations by passing into a
more accessible homological setting. In this sense, cyclic homology serves not only as a
tool of intrinsic interest, but also as a crucial bridge between non-commutative algebra
and topology.

2 Hochschild (co)homology
The Hochschild homology arose naturally in the algebraic theory as a machine to

compute the default of commutativity of an algebra, and more generally of bimodule over
it. This homology defines a non-commutative generalization of the notion of differential
forms. This analogy is known as the Hochschild-Kostant-Rosenberg theorem and pro-
pelled the domain of Non-Commutative Geometry in the early 60’s.

There are several possible definitions of Hochschild homology, we will present it in
a chronological way by starting with the original construction. This part will be deeply
inspired by [Lod92].
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2.1 Definition of Hochschild homology
We fix A to be a Fréchet algebra over C. We will note ⊗ := ⊗π the projective tensor

product over C, which keeps stable the structure of Fréchet algebra (see [Gro54]). Let us
denote by Cn(A) := A⊗n+1, the tensor product n+1-times of the fixed algebra A. One can
define n+1 operators di : Cn(A)→ Cn−1(A), for 0≤ i ≤ n, given by:

di(a0 ⊗·· ·⊗an) :=


a0a1 ⊗a2 ⊗·· ·⊗an i = 0
a0 ⊗·· ·⊗aiai+1 ⊗·· ·⊗an 0< i < n
ana0 ⊗a1 ⊗·· ·⊗an−1 i = n

(1)

One can check that these operators verify the identities:

did j = d j−1di for 0≤ i < j ≤ n. (2)

Then, they induce the differential map b:

b :=
n∑

i=0
(−1)idi : Cn(A)→ Cn−1(A). (3)

verifying the required condition b ◦b = 0.

DEFINITION 2.1 We call Hochschild homology of A the homology of the complex C⋆(A)
equipped with the differential b:

HH⋆(A) := H⋆(C⋆(A),b).

To define the Hochschild homology with coefficients, we want the coefficient space to
have a correct structure. As we see in the definition of the di ’s (1), we use the right
and the left actions of A on itself, i.e. its A-bimodule structure. We recall that a bi-
module over A, is a module over the algebra Ae := A ⊗ Aop, where Aop is the opposite
side multiplication algebra with product a · b := b · a. If M is a module over Ae (i.e. a
bimodule over A) one can define the vector space Cn(A, M) := M ⊗ A⊗n and the opera-
tors di : Cn(A, M) → Cn−1(A, M), for 0 ≤ i ≤ n, whose formulas are the same as (1), with
a0 ∈ M. It induces a differential b : Cn(A, M) → Cn−1(A, M) still given by the alternated
sum as in (3).

DEFINITION 2.2 For any Ae-module M, we call the Hochschild homology of A with
coefficients in M the homology of the complex C⋆(A, M) equipped with the differential b:

HH⋆(A, M) := H⋆(C⋆(A, M),b).

The classical Hochschild homology corresponds then to the Hochschild homology with
coefficients in A.

The Hochschild homology is compatible with the algebraic structures in any possible
ways. If f : M → M′ is a A-bimodule homomorphism, it induces a linear map f⋆ :
HH⋆(A, M) → HH⋆(A, M′) given by m ⊗ a1 ⊗ ·· · ⊗ an 7→ f (m)⊗ a1 ⊗ ·· · ⊗ an. Also, any
algebra homomorphism g : A → A′ induces a linear map g⋆ : HH⋆(A, M′)→ HH⋆(A′, M′),
where M′ is a A′-bimodule (whose A-bimodule structure naturally arises from g), given
by m⊗a1 ⊗·· ·⊗an 7→ m⊗ g(a1)⊗·· ·⊗ g(an).
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2.2 As a derived functor
The Hochschild computes the default of commutativity of an algebra, or more gener-

ally the default of commutativity between the right and left actions on a bimodule over
this algebra. In small degree, HH0(A, M) corresponds to the cokernel of b : C1(A, M) →
C0(A, M) which is given by b(m⊗a)= ma−am, and then to the quotient of M by the space
of commutators [A, M]= {ma−am | a ∈ A,m ∈ M}:

HH0(A, M)≃ M/[A, M].

For instance, HH0(A)= A whenever A is commutative.

LEMMA 2.1 If 0−→ M −→ N −→ P −→ 0 is an exact sequence of Ae-modules, the following
is exact for all n

HHn−1(A,P)→ HHn(A, M)→ HHn(A, N)→ HHn(A,P)→ HHn+1(A, M).

This lemma and the computation of HH0 above tell us that the Hochschild homology is
the derived functor of the left-exact functor M 7→ M/[A, M]= A⊗Ae M, which is:

HH⋆(A, M)≃TorAe

⋆ (A, M).

This point of view gives a completely new approach to the computation of this homology.
Whenever P⋆(A) is a projective resolution of A as a bimodule over itself, one can compute
its Hochschild homology as HH⋆(A, M)= H⋆(M⊗Ae P⋆(A)) and the result doesn’t depend
on the resolution. It gives then different possibilities to compute the same object.

Example(s) Here are some examples of projective resolutions of A as Ae-module.

1. If we choose the projective resolution to be the bar complex Cbar
n (A) := A⊗n+1 with

the differential map

b′ =
n−1∑
i=0

(−1)idi : Cbar
n (A)→ Cbar

n−1(A), (4)

we recover the initial definition:

HH⋆(A, M)≃ H⋆

(
M⊗Ae Cbar

⋆ (A)
)
= H⋆(C⋆(A, M),b).

The bar complex is known as the canonical projective (free) resolution of A as a
Ae-module.

2. If A is commutative and unital, we can also choose the projective resolution P⋆(A)
given by Pn(A) := A⊗∧n A⊗A, where A := A/(1·C) is the cokernel of the embedding
of the ground field C in A. The space P⋆(A) is a free graded Ae-module equipped
with the differential δ :=∑n

i=0(−1)iδi : Pn(A)→ Pn−1(A) given by:

δi(a⊗a1 ∧·· ·∧an ⊗a′) :=


a⊗a2 ∧·· ·∧an ⊗a′a1 i = 0
a⊗a1 ∧·· ·∧aiai+1 ∧·· ·∧an ⊗a′ 0< i < n
ana⊗a1 ∧·· ·∧an−1 ⊗a′ i = n
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In this case, the Hochschild homology can be computed as:

HH⋆(A, M)≃ H⋆(M⊗Ae P⋆(A))≃ M⊗AΩ
⋆(A), (5)

where Ω⋆(A) denotes the space of Kähler differentials of A over C (see [Lod92,
§1.3]). Taking for coefficient space M = A, we obtain HH⋆(A) ≃Ω⋆(A), which is an
algebraic analogue of the Hochschild-Kostant-Rosenberg [?, HKR]ited in theorem
2.4. This isomorphism is given by the well-defined anti-symetrization map

ε : a0 ⊗a1 ⊗·· ·⊗an 7→ a0 ⊗a1 ∧·· ·∧an. (6)

2.3 Definition of Hochschild cohomology
Sticking with the point of view of derived functor, we want to make the Hochschild

cohomology as a Ext-functor.

DEFINITION 2.3 For any Ae-module M, we call the Hochschild cohomology of A with
coefficients in M the homology of the complex C⋆(A, M) = HomAe (Cbar

⋆ (A), M) equipped
with the dual differential b∨ := (−1)n(−◦b′) : Cn(A, M)→ Cn+1(A, M):

HH⋆(A, M) := H⋆(C⋆(A, M),b∨).

The Hochschild homology without coefficients is defined as HH⋆(A) := HH⋆(A, A).

This cohomology is still compatible with algebraic and bimodule structures as the
Hochschild homology. It also computes the default of commutativity but in the following
way. In small degree, HH0(A, M) is the kernel of b∨ : C0(A, M) → C1(A, M) given by
(b∨)(m)(a) = ma− am. It corresponds to the submodule of M where the right and left
A-action coincide, which is ZA(M) the center of M with respect to A:

HH0(A, M)≃ ZA(M).

When A is commutative, the right and left actions coincide and then HH0(A)= A.

LEMMA 2.2 If 0−→ M −→ N −→ P −→ 0 is an exact sequence of Ae-modules, the following
is exact for all n

HHn+1(A, M)→ HHn(A,P)→ HHn(A, N)→ HHn(A, M)→ HHn−1(A,P).

As before, this long exact sequence and the computation of HH0 tells us that this
cohomology is the derived functor of the right exact functor M 7→ ZA(M)= HomAe (A, M).
In other words:

HH⋆(A, M)≃Ext⋆Ae (A, M),

as dual statement of the one of the Hochschild homology. Then for any projective resolu-
tion P⋆(A) of A as a bimodule over itself, HH⋆(A, M) can be computed as the cohomology
groups of HomAe (P⋆(A), M).
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2.4 Relation with other (co)homologies
The structure of algebra unifies several other structures as group, manifold, cyclic

object, etc. For all of these, it does exists a functor transposing the initial structure to
an algebra. For instance, we can send a group to its group algebra, or a manifold to the
algebraic space of smooth functions over it, etc. The question of data-loss through these
transformation has been studied for decades by comparing (co)homological results.

Let Γ be a discrete group. We denote by C[Γ] its group algebra, which is the space of
complex valued Dirac functions on G. The discrete group homology with coefficient in a
Γ-module N corresponds to the following Tor-functor:

H⋆(Γ, N)≃TorC[Γ]
⋆ (Γ, N).

THEOREM 2.3 (Mac-Lane’s theorem [ML63])
For all C[Γ]-bimodule M, the Hochschild (co)homology of C[Γ] and the group (co)homology
of Γ are related in the following sense:

HH⋆(C[Γ], M)≃ H⋆(Γ,AdΓ(M)) and HH⋆(C[Γ], M)≃ H⋆(Γ,AdΓ(M)),

where AdΓ(M) is the Γ-module for the action g ·m := δgmδ−1
g .

This isomorphism is known as the Mac-Lane isomorphism whose proof relies on the fact
that the bar complex of Z[Γ] defines a resolution of Z as the trivial module over Γ.

Let M be a compact differentiable manifold. One can associate to it the commutative
and unital algebra of complex valued functions C ∞(M ) equipped with the point-wise
multiplication. Its Hochschild (co)homology is described as the following.

THEOREM 2.4 (Hochschild-Kostant-Rosenberg’s theorem [HKR09])
The Hochschild homology of C ∞(M ) corresponds to the differential forms over M , while
its cohomology corresponds to the exterior algebra X(M ) of vector fields over M , both
through the anti-symmetrization map defined in (6):

HH⋆(C ∞(M ))≃Ω⋆(M ) and HH⋆(C ∞(M ))≃
⋆∧
X(M ).

The meaning of this result is that the functor of smooth functions from differentiable
manifolds to commutative algebras doesn’t loose any cohomological information. This
was the main argument that gave rise to the Non-Commutative Geometry and the ear-
lier works of A. Connes and B. Tsygan.

To go further, in a cyclic space framework (see [Lod92, §6]) one can associate to any
cyclic space X the cyclic module C[X ], which is the free complex vector space over X . We
can compute its Hochschild (co)homology, which takes the following form.

THEOREM 2.5 (Jones’ theorem [JP90])
For every cyclic space X , the Hochschild (co)homology of the cyclic module C[X ] is the
singular (co)homology of the geometric realization of X :

HH⋆(C[X ])≃ H⋆(|X |) and HH⋆(C[X ])≃ H⋆(|X |).
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The geometrical realization of a cyclic space naturally carries an action of the circle S1.
The computation of the singular homology of the associated orbit space was a main stake
in the 80’s, and the response provided can be expressed in terms of cyclic homology.

3 Cyclic (co)homology
In 1963, G. Rinehart proposed a way to compute cyclic homology as a generalization

of the De Rham cohomology, fitting with the HKR-theorem. He defined an operator B on
the Hochschild complex whose aim is to play the role of the De Rham differential in a
non-commutative framework. The juxtaposition of the differentials b and B gives natu-
rally rise to the study of a bicomplex called B⋆(A) whose total homology is called cyclic
homology and computes a non-commutative De Rham cohomology.

Almost twenty years after, A. Connes made the following remark. The cyclic oper-
ator given by a cyclic permutation of the Hochschild complex does commute with the
differential b. This operator appears naturally as an algebraic analogue of the circle ac-
tion on geometric realization of cyclic spaces. Then, the greatest quotient Cλ

⋆(A) of the
Hochschild complex making this cyclic action trivial is a complex once equipped with b.
The homology of this complex is called cyclic homology and defines an algebraic version
of S1-equivariant singular homology.

In order to stick together these two approaches, A. Connes proposed to study a the
well-known bicomplex CC⋆(A) which shows the equivalence between these two defini-
tions and then makes the whole theory relevant. The cyclic homology is simultaneously
a non-commutative analogue of the De Rham cohomology and of the S1-equivariant sin-
gular homology. Thanks to the work of J-L. Loday and D. Quillen, it turns out that cyclic
homology is also a great tool for the computation of cohomology of matrix Lie algebras
and due to the work of A. Connes, it defines a relevant receptacle for the Chern character
as well. It is its polyvalence that makes cyclic homology interesting to study.

3.1 Definition of cyclic homology
We fix A to be a complex Fréchet algebra as before. We define the cyclic operator

t : Cn(A)→ Cn(A) and the norm operator N : Cn(A)→ Cn(A) as:

t(a0 ⊗·· ·⊗an) := (−1)nan ⊗a0 ⊗·· ·⊗an−1, (7)

N := 1+ t+·· ·+ tn. (8)

The map t is called cyclic as it is given by an action of cyclic groups. These operators
commute with di defined in (1) in the following way:

di t =−tdi−1 for 0< i ≤ n and d0t = (−1)ndn. (9)

We obtain the identities bN = Nb′ and b(1− t) = (1− t)b′, where b′ is defined in (4). The
following is then well-defined.
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DEFINITION 3.1 We call cyclic homology of A the homology of the total complex of:

CC⋆(A) :=
A⊗3 A⊗3 A⊗3 A⊗3

A⊗2 A⊗2 A⊗2 A⊗2

A A A A

b −b′ b −b′

b −b′

1−t

b

N

−b′

1−t N

b −b′

1−t

b

N

−b′

1−t N

1−t N 1−t N

which is HC⋆(A) := H⋆(Tot CC⋆(A)).

As for the Hochschild homology, these groups are stable under algebraic transformations.
Any algebra homomorphism f : A → A′ induces a linear map f⋆ : HC⋆(A)→ HC⋆(A′). In
small degree, HC0(A) is the quotient of A by the image of b : A⊗2 → A and the image of
1− t : A → A. The cyclic operator t is trivial in zeroth degree and then:

HC0(A)= A/[A, A]= HH0(A).

We now try to associate to the cyclic bicomplex the two constructions by G. Rinehart and
A. Connes, also computing cyclic homology groups.

3.2 Different points of view
DEFINITION 3.2 We define the Connes’ cyclic complex of A (see [Con85]) as the quo-
tient graded space

Cλ
n(A) := A⊗n+1/(1− t)(A⊗n+1),

equipped with the differential b as before. The Connes’ cyclic homology of A is the
homology of the Connes’ cyclic complex:

Hλ
⋆(A) := H⋆(Cλ

⋆(A),b).

One can remark that the Connes’ cyclic complex is the quotient of the first column of the
cyclic complex through 1− t, which is the image of the morphism that we call

ν : CC⋆(A)↠Cλ
⋆(A). (10)

PROPOSITION 3.1 For all Fréchet algebra A, cyclic homology and Connes’ cyclic homol-
ogy coincide through ν:

HC⋆(A)≃ Hλ
⋆(A).

Remark This result might not happen when the ground field in not contained in Q be-
cause the proof uses the fact that every integer is not a zero-divisor in C.

Proof. It suffices to show that the rows of the bicomplex CC⋆(A) extended with ν are
acyclic. We define the following homotopy operators:

h′ := 1
n+1

· id and h := −1
n+1

n∑
i=1

iti.
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They verify h′N + (1− t)h = id and Nh′+h(1− t)= id as expected. QED.

Taking the quotient over 1− t in the Connes’ cyclic complex corresponds topologically to
take orbits over an action of S1. Indeed, the circle S1 is the geometric realization of
the cyclic space with two non-degenerated cells, the base point ⋆ in dimension 0 and in
dimension 1, the cell corresponding to the cyclic action of Z/(n+1)Z on degree n given
the cyclic operator t. The cyclic space framework (see [Lod92, §6]) enables us to state the
following.

THEOREM 3.2 (Jones’ theorem [JP90]) For every cyclic object X , the cyclic homology of
its cyclic module C[X ] is the S1-equivariant singular homology of its geometric realization:

HC⋆(C[X ])≃ H⋆(ES1 ×S1 |X |)= HS1

⋆ (|X |).

The case A = C corresponds to the case where the underlying cyclic object X = {⋆} is a
point, which is

HC⋆(C)≃ H⋆(ES1 ×S1 {⋆})≃ H⋆(BS1)≃C[u], (11)

where u is of order 2. The previous theorem completes the theorem 2.5 and gives to the
cyclic homology a really nice geometrical description.

When A is unital we can define the linear map s : Cn(A)→ Cn+1(A) given by

s(a0 ⊗·· ·⊗an) := 1⊗a0 ⊗·· ·⊗an. (12)

The operators di, s and t verify the following relations:

dis = sdi−1 for 0< i < n,d0s = id,dns = (−1)nt, (13)

tn+1 = id. (14)

These formulas make s verify b′s + sb′ = id, which is that s defines an homotopy of
(Cbar

⋆ (A),b′), i.e. of the odd columns of CC⋆(A). The operator s is called extra degeneracy
and leads to the so called Connes’ boundary map (see [Lod92, §2]):

B = (1− t)◦ s◦N : Cn(A)−→ Cn+1(A). (15)

In the case of a unital algebra, the cyclic bicomplex CC⋆(A) is then isomorphic to the one
generated by b and B:

B⋆(A) :=
A⊗3 A⊗2 A

A⊗2 A

A

b b b

b b

B B B

b

B

PROPOSITION 3.3 For any unital Fréchet algebra A: HC⋆(A)≃ H⋆(Tot B⋆(A)).
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Through the anti-symmetrization map ε defined in the (6), we know that the Hochschild
homology corresponds to the space of differential forms. It turns out this boundary map
B, increasing the degree, becomes to the exterior derivative on the De Rham complex,
which is:

A⊗n A⊗n+1

Ωn−1(A) Ωn(A)

ε

B

ε

d

The bicomplex B⋆(A) then encapsulated the datum of the differentials forms and of the
exterior derivative. The homology of its total complex needs to be related to the De Rham
cohomology; that the observation of G. Rinehart in the early 60’s. We have the following
theorem, which is an extended version of the theorem 2.4.

THEOREM 3.4 The De Rham cohomology of a compact manifold M is related to the cyclic
homology of its commutative unital algebra of smooth functions C ∞(M ) by the following:

HCn(C ∞(M ))≃Ωn(M )/d(Ωn−1(M ))⊕Hn−2
dR (M )⊕Hn−4

dR (M )⊕·· ·

3.3 Definition of cyclic cohomology
All the operators di, t and s can be dualized in the sense that on the dual complex

C⋆(A) = HomAe (Cbar
⋆ (A), A) defined in 2.3 we have d∨

i :=−◦di, t∨ :=−◦ t and s∨ :=−◦ s.
They define of course b∨ :=∑n

i=0(−1)id∨
i , (b′)∨ :=∑n−1

i=0 (−1)id∨
i and N∨ := 1+ t∨+·· · (∨)n. It

gives rise to the dual theory as follows.

DEFINITION 3.3 We call cyclic cohomology of A the cohomology of the total complex of:

CC⋆(A) :=
C2(A) C2(A) C2(A) C2(A)

C1(A) C1(A) C1(A) C1(A)

C0(A) C0(A) C0(A) C0(A)

(1−t)∨
b∨

N∨
−(b′)∨

(1−t)∨
b∨

N∨
−(b′)∨

(1−t)∨
b∨

N∨
−(b′)∨

(1−t)∨
b∨

N∨
−(b′)∨

(1−t)∨
b∨

N∨
−(b′)∨

(1−t)∨
b∨

N∨
−(b′)∨

which is HC⋆(A) := H⋆(Tot CC⋆(A)).

As for cyclic homology, it is functorial for the algebraic structure. In degree zero, HC0(A)
is the intersection of the kernel of b∨ : C0(A)→ C1(A) given by (b∨)(m)(a)= ma−am and
of (1−t)∨ : C0(A)→ C0(A). The kernel of the first is given by the center of A, denoted Z(A),
and the second is the zero map, which gives the analogous result for cyclic cohomology:

HC0(A)= Z(A)= HH0(A).

Of course we recover the same result as in theorem 3.2 but switching indexes by expo-
nents, which means that the cyclic cohomology of the simplicial module associated to a
cyclic object is the circle-equivariant singular cohomology of its geometric realization.
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3.4 Connes’ exact sequence
A way to compute cyclic homology is to used the Connes’ exact sequence. It is a long

exact sequence involving Hochschild homology groups and cyclic homology groups. Here
is the way to think about it.

The first column of the bicomplex B⋆(A), computing the cyclic homology, is isomorphic
to the complex C⋆(A), computing the Hochschild homology. The image of the embedding
I : C⋆(A) → B⋆(A) is the kernel of the two-degree shift S : B⋆(A) → B⋆(A)[2]. The map
S called periodicity map plays an important role in the theory. The following sequence of
complexes is then exact:

0 C⋆(A) B⋆(A) B⋆(A)[2] 0.I S

By an argument of a long exact sequence we obtain the following statement.

PROPOSITION 3.5 (Connes’ exact sequence) For every unital Fréchet algebra A, the
following sequences are exact for all n:

HHn(A) HCn(A) HCn−2(A) HHn−1(A),I S B

HHn(A) HCn−1(A) HCn+1(A) HHn+1(A),B S I

where B is the Connes’ boundary map defined in equation (15).

The proposition 3.5 can be viewed as a simple algebraic version of the Gysin exact
sequence. Indeed, let us give a sphere-bundle, which is a continuous bundle with fiber
F = Sk:

F −→ E π−→ M.

The map π induces a pull-back π⋆ : H⋆(M) → H⋆(E) in singular homology and a mor-
phism of integration alongs the fibers π⋆ : H⋆(E)→ H⋆−k(M). We call e(E) ∈ Hk+1(M) the
Euler class of the bundle. The Gysin exact sequence is the following exact sequence for all
n (see [BT95]):

Hn(E) Hn−k(M) Hn+1(M) Hn+1(E).π⋆ e(E)∧− π⋆

PROPOSITION 3.6 For every cyclic space X (see part [Lod92, §6 and §7]), the Gysin exact
sequence associated to the sphere-bundle

S1 −→ |X | π−→ ES1 ×S1 |X |
corresponds to the Connes’ exact sequence for the cyclic module C[X ]. In other words, the
following are isomorphic under the identifications of theorems 2.5 and 3.2:

Hn(|X |) Hn−1
S1 (|X |) Hn+1

S1 (|X |) Hn+1(|X |)

HHn(C[X ]) HCn−1(C[X ]) HCn+1(C[X ]) HHn+1(C[X ])

π⋆ e(|X |)∧− π⋆

B S I
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In particular, this theorem tells us that the periodicity map S can be viewed as a cup
product. Indeed, HC⋆(A) defines a module over the algebra HC⋆(C) = C[u] where u is
the generator element of order 2 as described in (11). It turns out we can describe S as
the cup product along u:

S : HC⋆(A)→ HC⋆+2(A), x 7→ u∪ x.

In [Con85], A. Connes defined the suspension map as the two-degree shift map sending
a Chern class to the previous one, see (19).

3.5 Decomposition along conjugacy classes
An example of algebra whose cyclic homology would be interested to compute is the

group algebra C[Γ] of a discrete group Γ. It is defined as the space of complex valued
Dirac functions on Γ, endowed with the convolution product.

We fix an element x ∈ Γ and we write 〈x〉 for its conjugacy class. For all n, we can define
the family spent by:

{δg0 ⊗·· ·⊗δgn | g i ∈Γ and g0 ×·· ·× gn ∈ 〈x〉}⊆C[Γ]⊗n+1.

It is stable under di, t and s because these operators are just intern multiplications and
permutations. We write C⋆(C[Γ])x and CC⋆(C[Γ])x for the subcomplexes of C⋆(C[Γ]) and
CC⋆(C[Γ]) generated by this family.

PROPOSITION 3.7 The Hochschild complex and cyclic complex of the group algebra C[Γ]
decompose along the space of conjugacy classes 〈G〉 of G:

C⋆(C[Γ])≃ ⊕
〈x〉∈〈G〉

C⋆(C[Γ])x and CC⋆(C[Γ])≃ ⊕
〈x〉∈〈G〉

CC⋆(C[Γ])x.

One may expect to compute the homology of the local complexes to obtain information
on the global complex. We call Γx := {g ∈ Γ | gx = xg} the centralizer of x in Γ. It is
equipped with an integral action γx : Z×Γx → Γx given by γx(n, g) := xn g. Its classifying
space BΓx is then endowed with the circle action Bγx : S1 ×BΓx → BΓx. The singular
complex C⋆(BΓx) and the local complex C⋆(C[Γ])x turns out to be isomorphic via the map
(see [Lod92, §7.4.5]):

(g0, · · · , gn) 7→ δ(g1···gn)−1z ⊗δg1 ⊗·· ·δgn .

Paired with theorems 2.5 and 3.2, it induces the following identification.

PROPOSITION 3.8 The Hochschild homology and cyclic homology of the group algebra
C[Γ] can be computed as singular and S1-equivariant singular homologies, as:

HH⋆(C[Γ])≃ ⊕
〈x〉∈〈G〉

H⋆(BΓx) and HC⋆(C[Γ])≃ ⊕
〈x〉∈〈G〉

HS1

⋆ (BΓx).

We know from classical construction that the singular homology of BΓx corresponds
to the group homology of Γx with coefficients in the ground field. Then the Hochschild

12



homology of the group algebra C[Γ] can be expressed in terms of group homology of the
centralizers Γx. Finally, when x is of infinite order, the space ES1×S1 BΓx where the circle
S1 acts by Bγx on BΓx is homotopic to the classifying space of the group Γx/(x). It gives
the following.

THEOREM 3.9 The Hochschild homology and cyclic homology of the group algebra C[Γ]
can be computed as follows (see [Lod92, §7.4.10] and [Bur85, Theorem I]):

HH⋆(C[Γ])≃ ⊕
〈x〉∈〈G〉

H⋆(Γx,C),

HC⋆(C[Γ])≃ ⊕
〈x〉∈〈G〉fin

HS1

⋆ (BΓx)⊕ ⊕
〈x〉∈〈G〉∞

H⋆(Γx/(x),C),

where the superscripts "fin" et "∞" split the cases whether x is of finite or infinite order.

4 Relation with K-theory
The K-theory is a fundamental tool in non-commutative geometry, a great introduc-

tion is given by [Kar78]. Introduced in the 60’s by Alexander Grothendieck in order to
states the well known Grothendieck-Riemann-Roch theorem, it kept developing to ap-
pear as a major tool in the proofs of Bott periodicity and Atiyah-Singer theorems. It is a
Z/2Z-graded theory computing deep algebraic invariants as characteristic classes, Brauer
groups, etc. A big issue of this theory is that the computation of its groups is highly non-
trivial. The best way to deal with them is to pair K-theory with another theory whose
groups are more computable.

Great candidates for the study of K-groups are homology theories verifying the same
properties as K-theory: stable under Morita equivalences, stable under smooth homo-
topies and with excision property. The main issue is that any homology theory respecting
these properties is Z/2Z-graded. Both Hochschild homology and cyclic homology are then
irrelevant, but the so called periodic cyclic homology verifies the expected properties and
defines a Z/2Z-graded version of these theories. This homology appears to be a gener-
alization of the De Rham cohomology and then defines a great receptacle for the Chern
character coming from K-groups. This is what we will present in this section.

4.1 Periodic cyclic homology
We fix A to be a complex unital Fréchet algebra as before. We can define the differ-

entials b : Cn(A) → Cn−1(A) and B : Cn(A) → Cn+1(A) on the graded vector space C⋆(A)
as in (3) and (15). These operators verify the property:

b2 = B2 = (b+B)2 = 0.

We splits the Hochschild complex into the even and odd parts:

Ceven(A) := ∏
n≥0

C2n(A) and Codd(A) := ∏
n≥0

C2n+1(A).

13



The operator b +B sends any even (resp. odd) degree element to a pair of odd (resp.
even) degree elements, and then defines a differential map on the following Z/2Z-graded
complex.

DEFINITION 4.1 We call periodic cyclic complex of A the following complex:

ĈC(A) := Ceven(A) Codd(A)
b+B

b+B

This periodic cyclic complex has only two homology groups. From now we will use the sub-
script "•" for any Z/2Z-theory in order to distinguish with the classical "⋆" corresponding
to Z-graded theories. Also, we will always write the even part at the left, and the odd
part at the right.

DEFINITION 4.2 We define the periodic cyclic homology of A as the homology of the
complex ĈC(A), which is:

HP•(A) := H•(ĈC(A)).

The best way to compute periodic cyclic homology is to use the analogue of long exact
sequence in homology but in a Z/2Z-graded framework. It leads to the notion of exact
hexagon as follows.

THEOREM 4.1 (Excision property) Any admissible extensions of Fréchet algebras 0 →
A → B → C → 0 yields the exact hexagon:

HP0(A) HP0(B) HP0(C)

HP1(C) HP1(B) HP1(A)

THEOREM 4.2 (Morita invariance) For every Fréchet algebra r ≥ 1, the matrix trace
map τ : Mr(A) → A defines an isomorphism in Hochschild, cyclic and periodic cyclic ho-
mology:

HH⋆(Mr(A))≃ HH⋆(A), HC⋆(Mr(A))≃ HC⋆(A) and HP•(Mr(A))≃ HP•(A).

The periodic cyclic homology groups can also be computed using filtrations. They
play the role of derived functor property for the periodic cyclic homology. One can choose
any filtration to compute these homology groups, as any projective resolution computes
derived functors. A filtration F is a family {Fn A}n≥0 of sub-complexes of ĈC(A) such that
Fn+1A ⊂ Fn A and

⋃
n≥0 Fn A = ĈC(A). The canonical example of a filtration is the well

known Hodge filtration, defined as:

Fn
HodgeA :=

(
b(Cn(A))⊕⊕

i≥n
Ci(A),b+B

)
(16)

PROPOSITION 4.3 For any filtration F, we can compute the periodic cyclic homology of
A as:

HP•(A)≃ H•
(
lim← ĈC(A)/Fn A

)
.
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COROLLARY 4.4 When the periodicity map S is surjective (which is true for smooth alge-
bras):

HP•(A)≃ lim→ HC⋆+2n(A).

If I is a nilpotent ideal of the Fréchet algebra A, then its powers define a filtration of the
periodic cyclic complex (see [Lod92, §4.1.15]). If we compute the periodic cyclic homology
of A with respect to this filtration, then we obtain the following deep statement.

THEOREM 4.5 (Goodwillie [Goo86]) If I is a nilpotent ideal of A, then

HP•(A)≃ HP•(A/I).

This theorem is a weak version of the Goodwillie’s theorem in its final form, which states
that when I is a nilpotent ideal of A the I-relative K-theory and I-relative cyclic homol-
ogy of A are rationally isomorphic. A pattern of the proof is given in [Lod92, §11.3.2].

Now one may wonder how to relate periodic cyclic homology with the Hochschild and
cyclic theories. Indeed, these can be recovered from the grading complexes Fn A/Fn+1A
and ĈC(A)/Fn A, in the following way.

PROPOSITION 4.6 For any filtration F, we have the following identifications whenever n
and • are of the same parity:

HHn(A)≃ H•
(
Fn A/Fn+1A

)
and HCn(A)≃ H•

(
ĈC(A)/Fn A

)
.

Proof. We won’t prove that this computation is independent of the filtration, but we will
show that the result is true for the Hodge filtration FHodge defined above. Let’s arbitrarily
say that n is even which is • = 0 (the same proof stands for the odd case). When we apply
the definitions:

H0

(
Fn

HodgeA/Fn+1
HodgeA

)
≃ H0

(
Cn(A)/b(Cn+1(A)) b(Cn(A))

b+B

b+B

)
.

Now, the top map B is zero because it increases the degree while the right term is of
smaller degree than the left one. Same argument for the bottom maps b which is zero.
Finally the bottom B is also zero as b and B anti-commute, so its image is killed. We then
obtain:

H0

(
Fn

HodgeA/Fn+1
HodgeA

)
≃ H0

(
Cn(A)/b(Cn+1(A)) b(Cn(A))

b

0

)
≃ HHn(A).

The cyclic case can be proved similarly. QED.

The main advantage of this point of view is that it unifies Hochschild, cyclic and peri-
odic cyclic homologies in a unique Z/2Z-graded complex. One can recover some previous
statements with this framework. For instance, the sequence of Z/2Z-graded complexes

0 Fn−1A/Fn A ĈC(A)/Fn A ĈC(A)/Fn−1A 0
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is exact and induces the Connes’ exact sequences as in proposition 3.5. The shift map
S : HCn(A) → HCn−2(A) appears to be the homological map associated to the surjection
ĈC(A)/Fn A → ĈC(A)/Fn−2A coming from the axiom Fn A ⊂ Fn−2A.

THEOREM 4.7 (Homotopy invariance) If M is a compact manifold, the periodic cyclic
homology of its (unital) algebra C ∞(M ) of complex smooth functions can be expressed via
De Rham cohomology groups through the anti-symmetrization map defined in (6):

HP0(C ∞(M ))≃ ∏
n≥0

H2n
dR(M ) and HP1(C ∞(M ))≃ ∏

n≥0
H2n+1

dR (M ).

This theorem tells us that periodic cyclic homology is stable under smooth homotopies
and that there isn’t any loss of geometrical data passing from geometry side to algebraic
side. We know now that periodic cyclic homology verifies Excision property, Morita in-
variance and Homotopy invariance. Its computation is then relevant to study K-theory
groups through the Chern character that we will present now.

4.2 Chern character
Chern classes are topological invariants which furnish a way to distinguishing two

different vector bundles on a smooth manifold. The first class is a complete invariant
of line bundles while the top class controls the existence of nowhere vanishing section.
They live in even degree cohomology group as they are computed from the curvature of a
connection.

The Chern character is the map encapsulating all these datum in once, sending a
bundle to a polynomial over its Chern classes. This character transforms direct sum and
tensor product of vector bundles into sum and cohomological product, and then factorizes
over the even K-group of the manifold. By the theorem 4.7 the periodic cyclic homology
turns out to be a great receptacle for the Chern character and then a way to study K-
group through it.

Let M be compact manifold and π : E → M a q-dimensional complex vector bundle
over it. Let us fix a connection ω ∈ Ω1(M ,End(E)), i.e. a 1-form on the vector bundle
End(E) := E⊗E⋆ with some equivariance properties. The curvature of the ω is the 2-form
on M with coefficients in End(E) given by composing twice the connection Ωω := ω◦ω ∈
Ω2(M ,End(E)). This curvature computes how close the connection is to be a differential;
when it is zero the vector bundle E is said to be flat. Its characteristic polynomial Pω(t)=
det(tΩω− I), can be written degreewise as follows:

Pω(t)=
q∑

k=0
ck(ω)tk.

The coefficient ck(ω) is a sum of cohomological product of k eigenvalues, and then defines
an element of Ω2k(M ).

LEMMA 4.8 For every connections ω and ω′ of E:

• d(ck(ω))= 0 ∈Ω2k+1(M );
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• ck(ω)− ck(ω′) ∈Ω2k(M ) is exact.

In other words, these coefficients define classes in the De Rham cohomology of M that
don’t depend on the choice of the connections; we called them Chern classes of E and
use the notation ck(E) for all k. They were introduced for the first time in [BH58]. The
following map is then well defined:

VBun(M ) −→ Heven
dR (M )

E 7−→ (c0(E), c1(E), · · · ) . (17)

These characteristic classes are deeply related to Euler class and Pontryagin classes and
furnish great topological invariant on vector bundles.

PROPOSITION 4.9 Here are some topological properties we can extract from the Chern
classes:

• The first Chern class is a complete invariant of line bundles, which is that if L and
L′ are two line bundles over M , then c1(L) = c1(L′) if and only if L and L′ are
isomorphic.

• If π : E → M is of dimension q, the Chern class cq(E) is the Poincaré dual of the
vanishing space of a generic section s:

cq(E)=PD([s−1(0)]).

Then, the top Chern class is null when the bundle possesses a nowhere vanishing
section.

In the other hand, the exponential of the curvature exp(Ωω) := 1+Ωω+Ω2
ω/2+Ω3

ω/6+·· · ∈
Ωeven(M,End(E)) defines an element of even degree on the De Rham cohomology of M

with coefficient in End(E). Its trace is the sum of the exponential of the eigenvalues of
Ωω, and then can be expressed as a polynomial over the Chern classes:

tr(exp(Ωω))= rk(Ωω)+ c1 + 1
2

(c2
1 +2c2)+ 1

6
(c3

1 +3c1c2 +3c3)+·· · ∈Ωeven(M ),

where ck stands for ck(Ωω) and the general term is given by the general Newton polyno-
mial identity. By the previous lemma, we know that the trace tr(exp(Ωω)) defines a class
in the even degree cohomology of M which is independent of the choice of connection, we
denote it Ch(E) := [tr(exp(Ωω))] ∈ Heven

dR (M ). It verifies the following properties.

THEOREM 4.10 For every vector bundles E and E′ over M :

• Ch(E)=Ch(E′) if E and E′ are isomorphic;

• Ch(E⊕E′)=Ch(E)+Ch(E′);

• Ch(E⊗E′)=Ch(E)∧Ch(E′).
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In other words, the Chern character factorizes over the Grothendieck group of vector bun-
dles on M , which is called K0(M ). Also, as seen in theorem 4.7, periodic cyclic homology
in zeroth degree encapsulated the even datum of the De Rham cohomology. The following
map is then well-defined and called topological Chern character defined for the first
time in [Hir56]:

Ch : K0(M )−→ HP0(C ∞(M )). (18)

For an algebraic point of view, let us take A to be a unital complex Fréchet algebra
and M a module over A as is the first section. The complex C⋆(A, M) becomes a module
over the algebra C⋆(A) equipped with the shuffle product. An algebraic connection of M
is here a map ω : C⋆(A, M)→ C⋆+1(A, M) which verifies the relations:

ω(αβ)=ω(α)β+ (−1)deg(β)αB(β),

where α ∈ C⋆(A, M) and β ∈ C⋆(A). Its curvature is defined as before as the bicomposition
Ωω : C0(A, M) → C2(A, M). When M is a finite projective module of dimension q, which
corresponds geometrically to a space of sections over a vector bundle (see [AH12]), the
curvature becomes an element of Ωω ∈ C2(A,EndA(M)). The coefficients of its charac-
teristic polynomial Pω(t) = ∑q

k=0 ck(ω)tk define some elements ck(ω) ∈ C2k(A) that verify
analogous properties.

LEMMA 4.11 For every connections ω and ω′ of M:

• B(ck(ω))= 0 for all 0≤ k < q;

• ck(ω)− ck(ω′)= B(α) where α ∈ C2k−1(A),

where B is the Connes’ boundary map defined in the equation (15). In particular ck(ω) ∈
HC2k(A) is independent of the choice of connection.

We can define ck(M) ∈ HC2k(A) to be the k-the Chern class of the finitely projective
module M. Also, since the Chern classes of M tive in the kernel of B (except for the
top class), they belong to the image of the periodicity map S because of the long exact
sequence 3.5. Indeed, we have the following formula for all 0≤ k < q:

ck(M)= S(ck+1(M)). (19)

In [Con85] the suspension map is characterized by this property and turns out to be
described as a cup product afterwards. As the periodic cyclic homology is the inductive
limit over the cyclic homology groups (see 4.4), we have defined the following map:

{f.g.p. modules over A} −→ HP0(A)
M 7−→ (c0(M), c1(M), · · · )

Also, one can view any q-dimensional f.g.p. module M over A as the image of an idempo-
tent matrix e ∈Mq(A). By this analogy, the Chern classes can be expressed as follows:

ck(M)= ck(e)= tr
(
(−1)ke⊗2k+1

)
∈ Hλ

2k(A),
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where Hλ is the Connes’ cyclic homology defined in 3.2. To obtain a class in the cyclic
homology HC, we need to compose with ν as defined in (10).

Taking as before the Chern character (independent of the choice of connection) to
be Ch(M) := [tr(exp(Ωω)] ∈ HP0(A), we recover the same properties as in theorem 4.10
replacing vector bundles by the f.g.p. modules over A. The even K-group K0(A) is defined
to be the Grothendieck group of the space of these f.g.p. modules over A. The following
map, known as the algebraic Chern character:

Ch : K0(A)−→ HP0(A) (20)

stands as a non-commutative analogue of the map (18). It leads to a natural pairing
between K-group and periodic cyclic homology, called Chern-Connes pairing:

〈−,−〉 : K0(A)×HP0(A)−→C, 〈[M],α〉 := (α◦Ch)(M).

It exists a dual version of this Chern character from algebraic K-theory to periodic
cyclic cohomology (see [Kar78]):

Ch⋆ : K0(A)−→ HP0(A)

which verifies for all f.g.p. module [M] ∈ K0(A) and Fredholm module [π] ∈ K0(A) this
integral identity:

[π]◦ [M]=Ch⋆(π)◦Ch(M) ∈Z. (21)

Example(s) Here are some examples where this pairing is a striking tool.

1. If Γ = π1(M ) is the first homotopy group of a 4n-dimensional manifold M , the
Chern-Connes pairing between the signature operator IndΓD ∈ K0(C[Γ]) and α ∈
H2n(Γ,C)⊂ HP0(C[Γ]) (see 3.9) defines what we call a higher signature of M :

sgnα(M ) := 〈IndΓD,α〉 = (α◦Ch)(IndΓD) ∈C.

The Novikov’s conjecture stating that these higher signatures are homotopy invari-
ant would be true if we can extend the Chern-Connes pairing from the K-group of
C[Γ] to the K-group of C⋆

r Γ, which is the rational injectivity of the assembly map
(see [FRR95] for a deeper study).

2. The Kaplansky-Kadison conjecture states that if G is a torsion free group, then the
only idempotents of its reduced C⋆-algebra C⋆

r (G) are 0 and 1. We can check that if
the canonical trace τ : K0(C⋆

r (G)) → C, τ
(∑

g∈G ag g
)

:= aeG is integral (takes values
in Z⊂C), then the conjecture is true. In many cases it exists α ∈ HP0(C⋆

r (G)) such
that the canonical trace map is the result of a Chern-Connes pairing with α:

τ= 〈−,α〉 =α◦Ch.

Then, the Kaplansky-Kadison conjecture is true when α=Ch⋆(π) is the Chern char-
acter of a Fredholm module [π] ∈ K0(C⋆

r (G)) thanks to identity (21). See [Val02] for
a great introduction to K-theory via this conjecture.
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